Around Montgomery's trick: A taste of a bit hack

Marc Moreno Maza (after Wei Pan's notes)

University of Western Ontario, London, Ontario (Canada)

$$
\text { CS } 4435 \text { - CS } 9624
$$

Introduction

- Let a, b, p be number-like objects (integer numbers, univariate polynomials over a field) and such that $p \notin\{-1,0,1\}$.

Introduction

- Let a, b, p be number-like objects (integer numbers, univariate polynomials over a field) and such that $p \notin\{-1,0,1\}$.
- More formally let a, b, p be elements in an Euclidean domain with p not a unit.

Introduction

- Let a, b, p be number-like objects (integer numbers, univariate polynomials over a field) and such that $p \notin\{-1,0,1\}$.
- More formally let a, b, p be elements in an Euclidean domain with p not a unit.
- Computing $(a, b, p) \longmapsto(a b) \bmod p$ is a fundamental and challenging operation.

Introduction

- Let a, b, p be number-like objects (integer numbers, univariate polynomials over a field) and such that $p \notin\{-1,0,1\}$.
- More formally let a, b, p be elements in an Euclidean domain with p not a unit.
- Computing $(a, b, p) \longmapsto(a b) \bmod p$ is a fundamental and challenging operation.
- If a, b, p have large sizes, then FFT-based arithemtic and the fast division trick (S. Cook, 1966) (H. T. Kung, 1974) and (M. Sieveking, 1972) provides a practically efficient solution

Introduction

- Let a, b, p be number-like objects (integer numbers, univariate polynomials over a field) and such that $p \notin\{-1,0,1\}$.
- More formally let a, b, p be elements in an Euclidean domain with p not a unit.
- Computing $(a, b, p) \longmapsto(a b) \bmod p$ is a fundamental and challenging operation.
- If a, b, p have large sizes, then FFT-based arithemtic and the fast division trick (S. Cook, 1966) (H. T. Kung, 1974) and (M. Sieveking, 1972) provides a practically efficient solution
- If a, b, p have small sizes, say are machine integers, then enter Peter Montgomery and his famous reduction (Math.
Computation, vol. 44, pp. 519-521, 1985) improved by Xin Li in his PhD thesis (University of Western Ontario 2009).

The Original Montgomery Trick (1/2)

- Let x, p be integers such that $p \geq 2$. In practice p is a prime. We shall compute $x \bmod p$ in an indirect way.

The Original Montgomery Trick (1/2)

- Let x, p be integers such that $p \geq 2$. In practice p is a prime. We shall compute $x \bmod p$ in an indirect way.
- Consider a positive integer $R \geq p$ such that $\operatorname{gcd}(R, p)=1$. Hence there exists integers R^{-1}, p^{\prime} such that

$$
R R^{-1}-p p^{\prime}=1 \text { and } 0<p^{\prime}<R
$$

The Original Montgomery Trick (1/2)

- Let x, p be integers such that $p \geq 2$. In practice p is a prime. We shall compute $x \bmod p$ in an indirect way.
- Consider a positive integer $R \geq p$ such that $\operatorname{gcd}(R, p)=1$. Hence there exists integers R^{-1}, p^{\prime} such that

$$
R R^{-1}-p p^{\prime}=1 \text { and } 0<p^{\prime}<R .
$$

- Consider the following two Euclidean divisions:

The Original Montgomery Trick (1/2)

- Let x, p be integers such that $p \geq 2$. In practice p is a prime. We shall compute $x \bmod p$ in an indirect way.
- Consider a positive integer $R \geq p$ such that $\operatorname{gcd}(R, p)=1$. Hence there exists integers R^{-1}, p^{\prime} such that

$$
R R^{-1}-p p^{\prime}=1 \text { and } 0<p^{\prime}<R
$$

- Consider the following two Euclidean divisions:

$$
\begin{array}{c|l}
x & R \\
d & \text { and } \\
\cline { 2 - 2 } & d p^{\prime} \\
& R \\
\hline
\end{array}
$$

- Hence we have:

$$
x+f p=c R+d+\left(d p^{\prime}-e R\right) p=c R+d\left(1+p p^{\prime}\right)-e p R .
$$

The Original Montgomery Trick (1/2)

- Let x, p be integers such that $p \geq 2$. In practice p is a prime. We shall compute $x \bmod p$ in an indirect way.
- Consider a positive integer $R \geq p$ such that $\operatorname{gcd}(R, p)=1$. Hence there exists integers R^{-1}, p^{\prime} such that

$$
R R^{-1}-p p^{\prime}=1 \text { and } 0<p^{\prime}<R
$$

- Consider the following two Euclidean divisions:

$$
\begin{array}{c|ccc|c}
x & R \\
d & & \text { and } & d p^{\prime} & R \\
\cline { 2 - 3 } & & f & e
\end{array}
$$

- Hence we have:

$$
x+f p=c R+d+\left(d p^{\prime}-e R\right) p=c R+d\left(1+p p^{\prime}\right)-e p R .
$$

- Therefore $x+f p$ writes $q R$ and thus $\frac{x}{R} \equiv q \bmod p$.

The Original Montgomery Trick (2/2)

- Suppose $p>2$ is a prime and R is a power of 2 . Then we have obtained a procedure computing $\frac{x}{R} \bmod p$ for $0 \leq x<p^{2}$, amounting to 2 multiplications, 2 additions and 3 shifts.

The Original Montgomery Trick (2/2)

- Suppose $p>2$ is a prime and R is a power of 2 . Then we have obtained a procedure computing $\frac{x}{R} \bmod p$ for $0 \leq x<p^{2}$, amounting to 2 multiplications, 2 additions and 3 shifts.
- Recall the three divisions:

The Original Montgomery Trick (2/2)

- Suppose $p>2$ is a prime and R is a power of 2 . Then we have obtained a procedure computing $\frac{x}{R} \bmod p$ for $0 \leq x<p^{2}$, amounting to 2 multiplications, 2 additions and 3 shifts.
- Recall the three divisions:

$$
\begin{array}{c|ccc|c}
x & R & \text { and } & d p^{\prime} & R \\
\cline { 2 - 2 } & & \text { and } & x+f p & R \\
\cline { 2 - 2 } & & e & & \\
\end{array}
$$

- The result is q or $q-p$ since $\frac{x}{R} \equiv q \bmod p$ and we have:

$$
0 \leq x<p^{2} \Rightarrow 0 \leq q<2 p
$$

The Original Montgomery Trick (2/2)

- Suppose $p>2$ is a prime and R is a power of 2 . Then we have obtained a procedure computing $\frac{x}{R} \bmod p$ for $0 \leq x<p^{2}$, amounting to 2 multiplications, 2 additions and 3 shifts.
- Recall the three divisions:

$$
\begin{array}{c|ccc|c}
x & R & \text { and } & d p^{\prime} & R \\
\cline { 2 - 2 } & & \text { and } & x+f p & R \\
\cline { 2 - 2 } & & e & & \\
\end{array}
$$

- The result is q or $q-p$ since $\frac{x}{R} \equiv q \bmod p$ and we have:

$$
0 \leq x<p^{2} \Rightarrow 0 \leq q<2 p .
$$

- To compute in $\mathbb{Z} / p \mathbb{Z}$, we map each $a \in \mathbb{Z} / p \mathbb{Z}$ to $a R \in \mathbb{Z} / p \mathbb{Z}$. Then the above procedure gives us $\frac{a R b R}{R} \bmod p$, that is, the image of $a b$ in this new representation.

The Improved Montgomery Trick (1/5)

- Suppose $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.

The Improved Montgomery Trick (1/5)

- Suppose $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.
- Let $R:=2^{\ell}$ and $0 \leq x \leq(p-1)^{2}$. We get $\frac{x}{R} \bmod p$ by:

The Improved Montgomery Trick (1/5)

- Suppose $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.
- Let $R:=2^{\ell}$ and $0 \leq x \leq(p-1)^{2}$. We get $\frac{x}{R} \bmod p$ by:
- Using $c 2^{n} \equiv-1 \bmod p$ we have:

$$
\frac{x}{R} \equiv q_{1}+\frac{r_{1}}{R} \equiv q_{1}-q_{2}-\frac{r_{2}}{R} \equiv q_{1}-q_{2}+q_{3} \quad \bmod p
$$

The Improved Montgomery Trick (1/5)

- Suppose $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.
- Let $R:=2^{\ell}$ and $0 \leq x \leq(p-1)^{2}$. We get $\frac{x}{R} \bmod p$ by:
- Using $c 2^{n} \equiv-1 \bmod p$ we have:

$$
\frac{x}{R} \equiv q_{1}+\frac{r_{1}}{R} \equiv q_{1}-q_{2}-\frac{r_{2}}{R} \equiv q_{1}-q_{2}+q_{3} \quad \bmod p
$$

- The last equality requires a proof. We have:

$$
r_{2}=c 2^{n} r_{1}-q_{2} R=c 2^{n} r_{1}-q_{2} 2^{\ell} .
$$

Hence | $2^{n} \mid r_{2}$ | thus $2^{2 n} \mid c 2^{n} r_{2}$ | and $R \mid c 2^{n} r_{2}$. |
| :--- | :--- | :--- | :--- | :--- |

The Improved Montgomery Trick (2/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.
- Recall $R:=2^{\ell}$ and $0 \leq x \leq(p-1)^{2}$. We get $\frac{x}{R} \bmod p$ by:

$$
\begin{array}{c|lc|l}
x & R \\
r_{1} & q_{1} & \text { and } & c 2^{n} r_{1} \\
\cline { 3 - 4 } & r_{2} & q_{2} & \text { and } \\
& c 2^{n} r_{2} & R \\
& 0 & q_{3}
\end{array}
$$

leading to $\frac{X}{R} \equiv q_{1}-q_{2}+q_{3} \bmod p$.

The Improved Montgomery Trick (2/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.
- Recall $R:=2^{\ell}$ and $0 \leq x \leq(p-1)^{2}$. We get $\frac{x}{R} \bmod p$ by:
leading to $\frac{X}{R} \equiv q_{1}-q_{2}+q_{3} \bmod p$.
- Moreover we have:

$$
-(p-1)<q_{1}-q_{2}+q_{3}<2(p-1) .
$$

Hence the desired output is either $\left(q_{1}-q_{2}+q_{3}\right)+p$, or $q_{1}-q_{2}+q_{3}$ or $\left(q_{1}-q_{2}+q_{3}\right)-p$

The Improved Montgomery Trick (2/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil \leq b$ on b-bit machine words.
- Recall $R:=2^{\ell}$ and $0 \leq x \leq(p-1)^{2}$. We get $\frac{x}{R} \bmod p$ by:
leading to $\frac{X}{R} \equiv q_{1}-q_{2}+q_{3} \bmod p$.
- Moreover we have:

$$
-(p-1)<q_{1}-q_{2}+q_{3}<2(p-1) .
$$

Hence the desired output is either $\left(q_{1}-q_{2}+q_{3}\right)+p$, or $q_{1}-q_{2}+q_{3}$ or $\left(q_{1}-q_{2}+q_{3}\right)-p$

- Indeed $0 \leq x \leq(p-1)^{2}$ and $p \leq R$ imply

$$
q_{1}=x \text { quo } R \leq(p-1)^{2} / R<p-1
$$

Next, we have: $q_{2}=c 2^{n} r_{1}$ quo $R<c 2^{n}=p-1$, since
$r_{1}<R$. Similarly, we have $q_{3}<p-1$.

The Improved Montgomery Trick (3/5)

We describe now the C implementation for 32-bit machine integer assuming that we have at hand the following function:

```
/**
    * Input : The addresses of two unsigned machine integers a, b
    * Output : Store (a * b) quo 2^32 into a, and
        store (a * b) mod 2^32 into b
    *
    **/
inline void MulHiLoUnsigned (uint32_t *a, uint32_t *b) {
uint64_t prod;
prod = (uint64_t)(*a) * (uint64_t) (*b);
*a = (uint32_t) (prod >> 32);
*b = (uint32_t) prod;
}
```


The Improved Montgomery Trick (4/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil$. Recall $R:=2^{\ell}$.
- Let a, b be non-negative 32-bit machine integers less than p. We show how to compute $\frac{a b}{R} \bmod p$.

The Improved Montgomery Trick (4/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil$. Recall $R:=2^{\ell}$.
- Let a, b be non-negative 32-bit machine integers less than p. We show how to compute $\frac{a b}{R} \bmod p$.
- $q_{1}, 2^{32-\ell} r_{1}:=$ MulHiLoUnsigned $\left(a, 2^{32-\ell} b\right)$

The Improved Montgomery Trick (4/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil$. Recall $R:=2^{\ell}$.
- Let a, b be non-negative 32-bit machine integers less than p. We show how to compute $\frac{a b}{R} \bmod p$.
- $q_{1}, 2^{32-\ell} r_{1}:=\operatorname{MulHiLoUnsigned}\left(a, 2^{32-\ell} b\right)$
- $q_{2}, 2^{32-\ell} r_{2}:=$ MulHiLoUnsigned $\left(2^{32-\ell} r_{1}, 2^{n} c\right)$

The Improved Montgomery Trick (4/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil$. Recall $R:=2^{\ell}$.
- Let a, b be non-negative 32-bit machine integers less than p. We show how to compute $\frac{a b}{R} \bmod p$.
- $q_{1}, 2^{32-\ell} r_{1}:=$ MulHiLoUnsigned $\left(a, 2^{32-\ell} b\right)$
- $q_{2}, 2^{32-\ell} r_{2}:=\operatorname{MulHiLoUnsigned}\left(2^{32-\ell} r_{1}, 2^{n} c\right)$
- $q_{3}:=c \frac{r_{2}}{2^{\ell-n}}$. The division $\frac{r_{2}}{2^{\ell-n}}$ is exact and the multiplication $c \frac{r_{2}}{2^{\ell-n}}$ is correct on 32 bits.

The Improved Montgomery Trick (4/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil$. Recall $R:=2^{\ell}$.
- Let a, b be non-negative 32-bit machine integers less than p. We show how to compute $\frac{a b}{R} \bmod p$.
- $q_{1}, 2^{32-\ell} r_{1}:=$ MulHiLoUnsigned $\left(a, 2^{32-\ell} b\right)$
- $q_{2}, 2^{32-\ell} r_{2}:=\operatorname{MulHiLoUnsigned}\left(2^{32-\ell} r_{1}, 2^{n} c\right)$
- $q_{3}:=c \frac{r_{2}}{2^{\ell-n}}$. The division $\frac{r_{2}}{2^{\ell-n}}$ is exact and the multiplication $c \frac{r_{2}}{2^{\ell-n}}$ is correct on 32 bits.
- Let $A:=q_{1}-q_{2}+q_{3}$. Then we execute the following code:

A += (A >> 31) \& p;
A $=\mathrm{p}$;
A += (A >> 31) \& p;

The Improved Montgomery Trick (4/5)

- Recall $p>2$ is a Fourier prime, that is, $p-1=c 2^{n}$ and $\ell \leq 2 n$ where $\ell=\left\lceil\log _{2}(p)\right\rceil$. Recall $R:=2^{\ell}$.
- Let a, b be non-negative 32-bit machine integers less than p. We show how to compute $\frac{a b}{R} \bmod p$.
- $q_{1}, 2^{32-\ell} r_{1}:=$ MulHiLoUnsigned $\left(a, 2^{32-\ell} b\right)$
- $q_{2}, 2^{32-\ell} r_{2}:=$ MulHiLoUnsigned $\left(2^{32-\ell} r_{1}, 2^{n} c\right)$
- $q_{3}:=c \frac{r_{2}}{2^{\ell-n}}$. The division $\frac{r_{2}}{2^{\ell-n}}$ is exact and the multiplication $c \frac{r_{2}}{2^{\ell-n}}$ is correct on 32 bits.
- Let $A:=q_{1}-q_{2}+q_{3}$. Then we execute the following code:

A += (A >> 31) \& p;
A -= p;
A += (A >> 31) \& p;

- Finally we have performed 6 shifts, 5 additions, 264 -bit multiplications and 1 32-bit multiplication.

The Improved Montgomery Trick (5/5)

- Consider $p=257=1+2^{8}$. Hence $c=1, n=8, \ell=9$ and $R=2^{9}$.
- Take $a=131$ and $b=187$.
- Compute $2^{32-\ell} b=1568669696$.
- Compute $q_{1}=47$ and $2^{32-\ell} r_{1}=3632267264$.
- Compute $q_{2}=216$ and $2^{32-\ell} r_{2}=2147483648$.
- Compute $q_{3}=c \frac{r_{2}}{2^{\ell-n}}=128$.
- Compute $A=q_{1}-q_{2}+q_{3}=-41$.
- Ajust to get $\frac{a b}{R} \equiv 216 \bmod p$.

